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I
A new phase of matter?

1 Micro-bang and big-bang

1.1 Energy and time scales

When atomic nuclei, generally called heavy-ions, collide at very high en-
ergies, such that the kinetic energy exceeds significantly the rest energy,
dense hadronic∗ matter is produced. We refer to these reactions as (ul-
tra)relativistic heavy-ion, or nuclear, collisions. The energy density of
hadronic matter with which we are concerned has a benchmark value of

ε = 1 GeV fm−3 = 1.8× 1015 g cm−3. (1.1)

The corresponding relativistic matter pressure is

P � 1
3ε = 0.52× 1030 bar. (1.2)

Dense matter with these properties must have existed in the early Uni-
verse about 10 µs after the big-bang. It might have been recreated ex-
tremely rarely in interactions of very-high-energy cosmic-ray particles.
Some astrophysical objects may reach these extreme conditions. It had
been speculated that a catastrophic change in the Universe could ensue
when these conditions are recreated in laboratory experiments, but these
fears have been refuted [85].
Experimental study of the physics of the early Universe requires in

principle a large, practically infinite, volume of matter. For this reason, it
is necessary to study high-energy collisions of the heaviest nuclei, rather
than the more elementary and simpler-to-handle interactions of protons
or leptons. However, we cannot study in the laboratory physical systems

∗ In Greek, barys means strong and heavy; leptos is weak, light; mesos is intermediate,
and hadros is strong. Hadronic (strong) interactions involve baryons and mesons
(heavy and semi-heavy particles) but not leptons, the light and relatively weakly
interacting electrons, muons, the heavy tau, and nearly massless neutrinos.
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2 A new phase of matter?

larger in volume than lead (Pb) or gold (Au). Hence, it would seem that
we will not be able to explore experimentally the properties of the phase
transition involving the dissolution of hadronic particles, since it is known
that genuine phase transitions cannot develop in finite physical systems.
However, only for non-relativistic finite systems it is impossible to ob-
serve experimentally the discontinuous phase properties. In our case, the
ability to produce particles from energy and the presence of virtual fluctu-
ation effects greatly enhance the number of physical states accessible. We
therefore hope to identify in collisions of relativistic heavy-ions a (nearly)
singular manifestation of a phase transition from the nuclear, hadronic
phase to a matter phase consisting of quarks and gluons.
We use units in which the Boltzmann constant k = 1. In consequence,

the temperature T is discussed in units of energy, which, in this book,
are either MeV � 2mec

2 (me is the electron mass) or GeV= 1000 MeV
� mNc

2 (mN is the mass of a nucleon). The conversion scale of typical
temperature involves ten additional zeros:

100 MeV ≡ 116× 1010 K. (1.3)

To appreciate the magnitude of this temperature, let us recall that the
center of the Sun is believed to be at T = 11 × 106K, and the scale of
temperature of interest to us is in fact 100 000 times greater.
In general, the units in this book are chosen such that the numerical

values � = c = 1, e.g., the mass of particles will also be measured in units
of energy and the energy density can appear as the fourth power of an
energy unit. With the conversion factor �c = 0.197 GeV fm, the reference
energy density in normal nuclei is

mN

VN
= 0.17mN fm−3 � 0.16 GeV fm−3 = 1.27× 10−4GeV4. (1.4)

Experimental results have shown that ultra-relativistic heavy-ion colli-
sions lead to the formation of a dense hadronic fireball, well localized in
space, with an energy density exceeding 1 GeV fm−3. Such a spatially
localized drop of highly excited, hot, and dense elementary matter will be
rapidly evolving, indeed exploding, driven by the high internal pressure.
The fireball has a short life span characterized by the size of the system
τ � 2R/c.
In relativistic heavy-ion reactions, the collision energy is shared among

numerous newly produced hadronic particles. Therefore, in the final state
we observe many soft (low-energy) newly produced hadronic particles,
rather than a few particles of high-energy as is the case in hard, elemen-
tary interactions. An important objective of our research is the under-
standing of the processes that lead to the conversion of kinetic collision
energy into high particle multiplicity. Because of the large numbers of
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Fig. 1.1. Top: Lorentz-contracted nuclei collide in the center-of-momentum
frame and form a region of dense matter, which evolves into a final state of
hadrons. Bottom: two key differences involving baryon number Nb and total
particle number N between the micro-bang and the cosmological big-bang.

particles produced, many thousands in recent experiments, we believe
that this can be accomplished using statistical mechanics. This method
has the advantage that it does not require a complete description of the
microscopic production and dynamics of particles. It will be introduced
in great detail in this book.
A qualitative image of the high-energy nuclear-collision ‘micro-bang’ is

depicted in Fig. 1.1: two nuclei are shown, Lorentz-contracted in the di-
rection of motion, approaching from two sides and colliding in the center-
of-momentum (CM) laboratory frame, forming a region of dense matter
(dark-shaded), the fireball. Subsequently, the collective expansion flow of
fireball matter develops, and evolves in the final state into free streams of
individual particles, indicated by individual arrows.
The temporal evolution of a fireball into a final state comprising a multi-

tude of different hadronic particles is similar to, though much faster than,
the corresponding stage in the evolution of the early Universe. Relativis-
tic heavy-ion collision leads to a rapidly evolving fireball of quark–gluon
plasma (QGP), in which the short time scale involved is probed by the
equilibration of abundance of quark flavors. We can not hope to be able
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to recreate the ‘slow big-bang’ of the Universe in the laboratory in the
last detail. Our objective is to obtain precise information about the physi-
cal processes and parameters which govern the rapidly changing hadronic
phase. Within a theoretical framework, we can hope to unravel what
happened when the Universe hadronized.
The bottom portion of Fig. 1.1 reminds us of the two important dif-

ferences between the two ‘bangs’, the big-bang of the Universe and the
micro-bangs generated in the nuclear-collision experiments.
1. The time scale of the expansion of the Universe is determined by the in-
terplay of the gravitational forces and the radiative and Fermi pressure
of the hot matter, whereas in the micro-bangs there is no gravitation
to slow the expansion, which lasts at most about 10−22 s. The time
scale of the heavy-ion collision, indicated in Fig. 1.1, suggests that the
size and the (local) properties of the exploding nuclear fireball must
change rapidly even on the scale of hadronic interactions, contrary to
the situation in the early Universe. It is convenient to represent the
expansion time constant τU of the Universe in terms of the Newtonian
gravitational constant G and the vacuum energy B:

τU=

√
3c2

32πGB = 36
√

B0
B µs, B0= 0.19GeV fm−3=(195MeV)4.

(1.5)

The range of values of the ‘bag’ constant B found in the literature,
145 MeV < B1/4 < 235 MeV, leads to 66 µs > τU > 25 µs.

2. The early radiative Universe was practically baryonless, whereas in
the laboratory we create a fireball of dense matter with a consider-
able baryon number Nb per total final particle multiplicity N . Thus,
unlike in the early Universe, we expect in a laboratory micro-bang a
significant matter–antimatter asymmetry in particle abundance. The
matter–antimatter symmetry of particle spectra is in turn an important
indicator suggesting that the matter–antimatter symmetry has been re-
stored in other aspects.
The matter–antimatter-abundance asymmetry is easily overcome the-

oretically, since it implies a relatively minor extrapolation of the baryo-
chemical potential µb introduced to fix the baryon density. In fact, RHIC
experiments at CM-energy 130A GeV per pair of nucleons (

√
sNN = 130

GeV) are already much more baryon–antibaryon symmetric than the SPS
condition where

√
sNN ≤ 17.3 GeV, and the highest RHIC and LHC en-

ergies will allow us to extrapolate our understanding from µb/T ≤ 1 to
µb/T � 1.
More difficult to resolve will be the differences in the physics due to the

different time scales involved. The evolution of the Universe is slow on
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–9

Fig. 1.2. Particle energy (temperature) as a function of time in the early Uni-
verse. Different evolutionary epochs are shown along with the accessible range
of accelerator laboratory experiments.

the hadronic time scale. Given the value of τU, we expect that practically
all unstable hadronic particles decay, all hadronic equilibria are fully at-
tained, and there is potentially time to develop macroscopic structures in
the ‘mixed phase’ of QGP and hadronic gas (HG), and for weak inter-
actions to take place. All this can not occur during the life span of the
dense matter created in nuclear collisions.
The temporal evolution of the Universe is depicted, in Fig. 1.2, as a

function of time. Beginning with decoupling of neutrinos and nucleosyn-
thesis at time O(1) s the evolution of the Universe is well understood
today. In comparison, little work has gone into the detailed understand-
ing of the earlier period when the nearly symmetric matter–antimatter
hadron gas emerged from the quark–gluon phase and evolved into the
baryon Universe in which we find ourselves today. This period spans the
temperature interval 300 MeV < T < 1 MeV, separating the perturbative
QGP epoch from the epoch of decoupling of neutrinos and cosmological
nucleosynthesis.
We see, in Fig. 1.2, that, after about 10µs, the deconfined phase of qu-

arks and gluons is transformed into a hot gas of hadrons, namely mesons,
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baryons, and antibaryons. Just after that, the evolution of our Universe
was marked by a period of baryon–antibaryon annihilation, and, possibly,
separation: although we have not been able to observe antimatter in our
galaxy, or in the neighborhood of our galaxy, it is far from certain that
there is no antimatter in our Universe.
The laboratory study of the formation of the QGP and hadronization

is expected to lead to an understanding of how the hot, baryon- and
antibaryon-rich hadron gas evolved after its formation at T � 170 MeV.
Employing the statistical-physics methods developed in this book, one
finds that the energy fraction of baryons and antibaryons within hadronic-
gas matter is about 25% just after the QGP has hadronized in the early
Universe, and nearly half of this is comprised of the heavier and un-
stable strange baryons and antibaryons. It is believed that this strong
antimatter component disappears from the Universe prior to the era of
nucleosynthesis.

1.2 Quarks and gluons

Both quarks and gluons manifest themselves only for a short instant fol-
lowing a high-energy interaction, and have never been observed as free
objects at macroscopic distances from the space–time volume of the reac-
tion; they are ‘confined’. Gluons interact only through strong interactions
and pose a great experimental challenge regarding the study of their prop-
erties. The measurement of the properties of confined quarks is relatively
easy, since, in addition to the strong-interaction (color) charge, they also
carry the electro-weak charges.
There are six different flavors of quarks, see table 1.1, two practically

stable flavors referred to as up – for the proton-like quark u, and down –
for the neutron-like quark d. We often refer to these two light quarks by
their generic name q. Light quarks q may be viewed as a single entity with
two states, up or down. The semi-heavy strange-flavor s-quark decays
due to electro-weak interaction when it is bound in hadrons, typically
within 10−10 s, whereas the heavier charm c and bottom b flavors have
approximate life spans of 3× 10−13 s and 10−12 s, respectively.
These six flavors of quarks form three doublets:(

u
d

)
,

(
c
s

)
,

(
t
b

)
; Qq =

(
+2
3

−1
3

)
.

The upper component of a doublet has charge Qq = +2
3 , in units of the

proton charge, whereas the lower component has one unit of charge less, as
is also the case for the related lepton doublet comprising the three charged
leptons (electron, muon, and tau) accompanied by their neutrinos. There
is an antiquark for each quark, carrying the opposite electrical charge.
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Table 1.1. Properties of quarks: flavor f symbol, flavor name, electrical charge
Qf (in units of proton charge Qp), and mass mf at energy scale 2 GeV; see the
text for further discussion of strange-quark mass

f Quark Qf [Qp] mf(2 GeV)
u Up +2

3 3.5 ± 2 MeV
d Down −1

3 6 ± 3 MeV
s Strange −1

3 115 ± 55 MeV
c Charm +2

3 1.25 ± 0.15 GeV
b Bottom −1

3 4.25 ± 0.15 GeV
t Top +2

3 174.3 ± 5.1 GeV

Quarks differ from charged leptons (electrons e, muons µ, and taus τ),
and neutrinos (νi, i = e,µ, and τ) by a further internal quantum number
they must carry, in addition to spin. The presence of this additional
quantum number arises even in the simplest quark models. For example,
consider hadronic particles containing three quarks of the same flavor,
such as the spin-3/2 baryons:

∆++ = (uuu), ∆− = (ddd), Ω− = (sss).

The physical properties of these baryons imply that three identical quarks
are present in the same S-wave with the same spin wave function. Since
quarks are fermions, they are subject to the Pauli principle. Thus, there
must be an additional way to distinguish the quarks, aside from spin. This
additional degeneracy factor has been determined to be gc = 3. It became
known as the color of quarks – in analogy to the three fundamental colors:
red, green, and blue.
Color is an internal quantum number, which like the electrical charge, is

thought to be the source of a force [123]. It seems that there is no way to
build an apparatus to distinguish the three fundamental color charges, all
colors must everywhere be exactly equal physically. The theory of color
forces must satisfy the principle of local nonabelian gauge invariance,
e.g., invariance under arbitrary local SU(3) transformations in the three-
dimensional color space. In other aspects, there is considerable formal
similarity with quantum electrodynamics (QED). Therefore, the theory
of strong interactions based on such color forces has been called quantum
chromodynamics (QCD).
The flavor structure and symmetry of quarks and leptons remains a

mystery today. We also do not have a fundamental understanding of the
origin of quark masses. In table 1.1 we see that quarks of various flavors
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differ widely in their ‘current’ mass mf , that is mass which enters the
elementary QCD Lagrangian LQCD. The values presented in table 1.1
are for the momentum scale 2 GeV.
Since quarks are confined inside hadrons, and the zero-point energy of

confinement is much larger than the masses of light quarks, their masses
could not be determined by direct measurement. However, the precise
masses of light u and d quarks do not matter in the study of hadronic in-
teractions, being generally much smaller than the pertinent energy scales,
The mass of the strange quark ms is barely heavy enough to be de-

termined directly in a study of hadronic structure. We adopt, in this
book, the value ms(1GeV) = 200 ± 20 MeV [150]. In the value of
ms reference is made to the scale of energy at which the mass of the
strange quark is measured: akin to the interaction strength, also the
mass of quarks depends on the (energy) scale. This value of ms corre-
sponds to ms(2GeV) � ms(1GeV)/1.30 = 154 ± 15 MeV. A somewhat
smaller value ms(2GeV) = 115 ± 55 MeV, see table 1.1, corresponding
to ms(1GeV) � 150 ± 70 MeV, is the recommended value. The rather
rapid change by 30% of the quark mass between the 1- and 2-GeV scales
is well known, but often not remembered, e.g., the ‘low’ recommended
mass of the charmed quark presented in table 1.1 in fact corresponds to
mc(1GeV) = 1.6 GeV, a rather ‘high’ value.

1.3 The hadronic phase transition in the early Universe

We will now show that the ‘freezing’ of quark–gluon ‘color’ deconfined
degrees of freedom is the essential ingredient in determining the conditions
in a transition between phases that has time to develop into equilibrium.
The following discussion tacitly assumes the presence of latent heat B in
the transition, and a discontinuity in the number of degrees of freedom,
g2 �= g1, where ‘1’ refers to the primeval QGP phase and ‘2’ to the final
hadronic-gas state.
To find the phase-transition point, we determine the (critical) temper-

ature at which the pressures in the two phases are equal. We allow, in
a transition of first order, for a difference in energy density ε1 �= ε2 asso-
ciated with the appearance of latent heat B (the ‘bag constant’), which
also enters the pressure of the deconfined phase. We consider the Stefan–
Boltzmann pressure of a massless photon-like gas with degeneracy gi:

Pc ≡ P1(Tc)=
π2

90
g1T

4
c − B, (1.6)

Pc ≡ P2(Tc)=
π2

90
g2T

4
c . (1.7)
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We obtain

B
T 4c
=

π2

90
∆g, Tc = B 1

4

(
90

π2∆g

)1
4

, ∆g = g1 − g2. (1.8)

The transition temperature, in the early Universe, is slightly higher than
the value seen in laboratory experiments, even though Eq. (1.8) involves
only the difference in the number of degrees of freedom. For the pressure
at the transition we obtain

Pc = B g2
∆g

. (1.9)

The pressure, and therefore the dynamics of the transition in the early
Universe, depends on the presence of non-hadronic degrees of freedom,
which are absent from laboratory experiments with heavy ions.
In summary, the phase-transition dynamics in the early Universe is

determined by

(a) the effective number of confined degrees of freedom, g2, at Tc;
(b) the change in the number of acting degrees of freedom ∆g, which

occurs exclusively in the strong-interaction sector; and
(c) the vacuum pressure (latent heat) B, a property of strong interactions.
In order to understand the early Universe, we need to measure these
quantities in laboratory experiments.
Both phases involved in the hadronization transition contain effectively

massless electro-weak (EW) particles. Even though the critical tempera-
ture does not depend on the background of EW particles not participating
in the transition, the value of the critical pressure, Eq. (1.9), depends on
this, and thus we will briefly digress to consider the active electro-weak
degrees of freedom. These involve photons, γ, and all light fermions, viz.,
e, µ,νe,νµ, and ντ (we exclude the heavy τ-lepton with mτ  T , and
we consider the muon as being effectively a massless particle). Near to
T � 200 MeV, we obtain

gEW=gγ+ 7
4g
EW
F = 14.25, (1.10)

with

gγ=2, 7
4g
EW
F = 7

8 × 2× (2e + 2µ+ 3ν) = 12.25,

where charged, effectively massless fermions enter with spin multiplicity
2, and we have three neutrino flavors – there are only left-handed light
neutrinos and right-handed antineutrinos, and thus only half as many
neutrino degrees of freedom as would naively be expected.
In the deconfined QGP phase of the early Universe, we have

g1 = gEW + gg + 7
4gq. (1.11)
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The number of effectively present strongly interacting degrees of freedom
of quarks and gluons is influenced by their interactions, characterized by
the strong coupling constant αs, and this book will address this topic in
depth,

gg = 2s × 8c
(
1− 15
4π

αs

)
,
7
4
gq =

7
4
2s × 2.5f × 3c

(
1− 50
21π

αs

)
, (1.12)

where the flavor degeneracy factor used is 2.5, allowing in a qualitative
manner for the contribution of more massive strangeness; table 1.1. The
degeneracies of quarks and gluons are indicated by the subscripts s(pin)
and, c(olor), respectively. We obtain

g1 =

 56.5, for αs = 0,
∼37, for αs = 0.5,
∼33, for αs = 0.6.

(1.13)

For the QCD perturbative interactions with αs = 0.5–0.6, we see that
g1 � 35± 2.
We now consider the final HG phase of the early Universe: there is no

light, strongly interacting fermion. Aside from three light bosons (pions
π± and π0), the presence of heavier hadrons contributes at T � 170 MeV,
and one finds for the hadronic degrees of freedom gh2 � 5

g2 ≡ gEW + gh2 � 19. (1.14)

Thus, we find from Eqs. (1.13) and (1.14),

g1 − g2 = ∆g =

 ∼37, for αs = 0,
∼18, for αs = 0.5,
∼14, for αs = 0.6.

(1.15)

For the QCD perturbative interactions with αs = 0.5–0.6, we see that
about half of the degrees of freedom freeze across the transition in the
early Universe.
For the value B1/4 = 190 MeV and αs � 0.5, we obtain from Eq. (1.8)

a transition temperature Tc � 160 MeV. At this temperature, the critical
pressure Eq. (1.9) is found to be Pc � 1.4B, and it includes both hadronic
and electro-weak partial pressure contributions. The hadronic fractional
pressure present in laboratory experiments and seen in lattice simulations
of gauge theories (compare with section 15.5) is P hc � B/4.

1.4 Entropy-conserving (isentropic) expansion

Much of the time dependence of an expanding Universe is related to the
assumption of adiabatic, i.e., entropy-conserving, expansion dynamics:

dE + P dV = T dS = 0, dE = d(εV ),
dV

V
=
3 dR
R

. (1.16)
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Here, as usual, ε is the energy density in the local restframe, and the
three-dimensional volume element dV scales with the third power of the
distance scale R. We obtain

3 dR
R

= − dε

ε+ P
. (1.17)

We will revisit Eq. (1.17) which describes general expansion dynamics of
the micro-bang.
We now relate the expansion dynamics to the velocity of sound, and

use well known relations of thermodynamics which we will discuss in this
book,

dε =
dε

dP

dP

dT
dT =

1
v2s
σ dT =

1
v2s

ε+ P

T
dT. (1.18)

We will revisit the derivation Eq. (1.18) when we study the same physics
occurring in the expansion of the dense-matter phase formed in heavy-ion
collisions in section 6.3. Using Eq. (1.17), we obtain

3 dR
R

= − 1
v2s

dT

T
. (1.19)

This equation allows the integral

RT 1/(3v
2
s ) = constant, (1.20)

which describes exactly how the temperature decreases in an isentropic
expansion once the equation of state P = P (ε), and hence the velocity of
sound is known.
For a relativistic equation of state, v2s =

1
3 and thus

R(t)T (t) = constant, V (t)T 3(t) = constant. (1.21)

While this result applies to a three-dimensional expansion, it is easily
generalized to a one-dimensional expansion, such as is expected to apply
in ultra-high-energy heavy-ion collisions.

1.5 The dynamic Universe

The (0, 0)-component of the Einstein equation,

Rµν − 1
2gµνR+ Λvgµν = 8πGTµν , (1.22)

gives the Friedmann equation which determines the rate of expansion of
the homogeneous Universe,

H2(t) ≡
(
Ṙ

R

)2
=
8πG
3

ε+
Λv
3

− k

R2
. (1.23)
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In the last term, k = 0, 1, and −1 for different geometries of the Universe
(flat, bubble, and hyperbolic-open); this term is negligible in our consid-
erations. Λv is Einstein’s cosmological term, which is playing a similar
dynamic role to B, but, in comparison, it is of irrelevant magnitude dur-
ing the early time period we consider. H is the Hubble ‘constant’ which
varies with time. Its present-day value, H(t0) = H0, is of considerable
interest and is given in the range

H0 = 70± 15 km s−1Mpc−1 =
0.7± 0.15
1010 y

= (2.2± 0.5)×10−17 s−1.

Inserting Eq. (1.17), with V ∝ R3, into Eq. (1.23) and neglecting the last
two terms in Eq. (1.23), we find for ε(t)

ε̇2 = 24πGε(ε+ P (ε))2. (1.24)

We equate the particle energy density and pressure, including the vacuum
term B in the relativistic equation of state for the particle component,

ε− B � π2

30
gT 4 � 3(P + B), ε = 3P + 4B. (1.25)

Thus,

ε̇2 =
128πG
3

ε (ε− B)2, (1.26)

which is valid (approximately) both for QGP and for HG phases, but in
the HG phase B = 0.
Despite its highly nonlinear nature, Eq. (1.26) has an analytical solu-

tion,

ε1 = B coth2(t/τU), (1.27)

where τU is the expansion time constant we have defined in Eq. (1.5) and
the subscript ‘1’ reminds us that Eq. (1.5) describes the evolution in the
quark–gluon phase with B �= 0. At t < τU, the energy density rises like
1/t2; for t > τU, it would remain constant at the vacuum energy density.
Once the transition to HG phase ‘2’ with B → Λv ∼ 0 has occurred,

the analytical form of the solution changes; we exploit the singularity
cothx → 1/x and obtain the power-law solution

ε2 = B
(τU
t

)2
=

3
32πG

1
t2
=

π2

30
g2T

4. (1.28)

In the middle of Eq. (1.28), we have substituted τU from Eq. (1.5) to show
that, in principle, B does not enter the solution. On the right-hand side
of Eq. (1.28), we show the energy density of the (radiation-dominated; see
Fig. 1.2) Universe, establishing the well-known relation
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(
t2
t

)2
=
(
T

Tc

)4
, T ∝ 1√

t
. (1.29)

Using Eq. (1.8) for Tc, we determine t2, the time when the Universe en-
tered the hadronic phase, which we use below in Eq. (1.33). Similarly we
also obtain the behavior of the size of the Universe with time. By insert-
ing Eqs. (1.27) and (1.28) into Eq. (1.23), we find how the scale R of the
Universe evolves:

R2 ∝ sinh
(

t

τU

) ∣∣∣∣
1

→
(

t

τU

) ∣∣∣∣
2

. (1.30)

To determine when the transition between the two phases occurs, and
how long it takes, we consider the pressure in both phases. In deconfined
phase ‘1’ where B �= 0, we have, using Eqs. (1.25) and (1.27),

3P1 = B
[
coth2(t/τU)− 4

]
, t ≤ t1, (1.31)

while in the post-transition phase

3P2 = B
(τU
t

)2
, t ≥ t2. (1.32)

Equating these two pressures with the critical pressure, Eq. (1.9), we ob-
tain

3Pc
B =

3g2
∆g

= coth2
(
t1
τU

)
− 4 =

(τU
t2

)2
. (1.33)

Equation (1.33) relates the time t1, when the transition begins, to t2,
when it ends, and the fraction of degrees of freedom which are ‘freezing’
in the transition, in units of the τU, Eq. (1.5).
We show the pressure and temperature in the Universe near hadroniza-

tion in Fig. 1.3. The solid line corresponds to αs = 0.6, and B1/4 = 195
MeV, for which value τU = 36µs. Dotted lines are for B1/4 = 170 MeV
and B1/4=220 MeV; a higher value of B1/4 leads to a shorter time scale,
Eq. (1.5).
It is straightforward to obtain the values of t1 and t2. Using Eq. (1.14),

g2 = 19, and Eq. (1.15), ∆g = 14, we find that the transition is complete
at t2 = 0.5τU. The onset of the transition is found at t1 = 0.37τU, and
the transition lasts 0.13τU in this case – the major uncertainty is related
to the value of g1 − g2 = ∆g. For the central value of B1/4 = 195 MeV
with τU = 36µs, we find that the transition lasts ∆t = (t2 − t1) = 4.7µs.
The duration of the hadronization transition is comparable (35%) to

the prior life span of the Universe in the deconfined phase. This time is
exceedingly long compared with the time scale of hadronic interactions
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µ

Fig. 1.3. Pressure (upper) and temperature (lower part) in the Universe, as
function of time, in the vicinity of the phase transition from the deconfined phase
to the confined phase. Solid lines, B1/4 = 195 MeV; dotted lines, B1/4 = 170
MeV (lower part) and B1/4 = 220 MeV (upper part) all for αs = 0.6.

(10−22 s). It allows the decay of all unstable hadronic particles and, poten-
tially, the development of domain structures. Moreover, the hadroniza-
tion time is also three orders of magnitude longer than the characteristic
time of hadronic weak decays, and is even longer than the decay time for
a muon. What exactly happens to matter in this last phase transition
in our Universe is not yet known. Studying dense matter in relativistic
heavy-ion collisions should help us establish the physical laws governing
this crucial epoch in the development of the Universe.

1.6 Looking for quark–gluon plasma: strangeness

How do we look for the phase transition of the primordial state of the
Universe recreated for a short glimpse of time in the laboratory? How can
we distinguish between the reactions involving confined hadronic particles
only, and those in which we encounter the color-deconfined quarks and
gluons?
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• Is a transient new phase of matter, existing for a brief instant in time,
perhaps for no more than 10−22 s, in principle observable? This can be
possible only if time-reversibility is broken more rapidly in the collision
process. This will be the tacit assumption we make. How this occurs is
one of the great open issues. In some sense on the time scale of 10−23 s
‘measurement’ of the colliding system must be occurring, leading to the
decoherence of the many-body quantum state.

• How can we observe a new phase of matter that exists for a short time,
evolves and ultimately disintegrates (hadronizes) into usual final-state
particles? At first sight, everything will always appear in the data very
much akin to a reaction involving only the HG phase.

Considerable effort must be put into the understanding of the tempo-
ral and spatial evolution of the colliding system. We must identify the
measurable quantities that can depend on the properties of the early and
dense stage of collision, allowing us to penetrate the ‘nebula’ of the final
hadronic state.
One observable is the quark chemical composition of the fireball of

dense matter, which evolves as new quark flavors, such as strangeness, are
cooked up inside the micro-bang fireball. Another observable is the en-
tropy content: when quarks and gluons are liberated, the usually ‘frozen’
color bonds are broken and an entropy-rich state of matter is formed. We
will address these two hadronic observables of QGP in greater detail in
this book, and we offer here a first short overview of the related ideas and
diagnostic methods.
The quarks ‘q’ (up ‘u’ and down ‘d’) from which the stable matter

around us is made are easily produced as quark–antiquark pairs because
they have small masses; see section 1.2. Another abundantly added quark
flavor is strangeness, particularly if the deconfined QGP phase of matter
is formed. Strangeness was one of the first proposed signatures of the
deconfined phase [220]. The mass of strange quarks and antiquarks is of
the same magnitude as the temperature T at which protons, neutrons,
and other hadrons are expected to dissolve into quarks. This means that
the abundance of strange quarks is sensitive to the conditions, structure,
and dynamics of the deconfined-matter phase. The dominant mechanism
for cooking up strangeness in quark–gluon deconfined matter was found
to be the gluon-fusion reaction gg→ ss̄ [226]. We will address this process
in depth in this book. Ultimately the quarks and antiquarks produced in
the fireball of dense matter find their way into a multitude of final-state
particles, with different quark contents, in the process of hadronization.
This situation is illustrated in Fig. 1.4.
Detection of strange particles is facilitated by the fact that the mas-

sive strange quark decays into lighter quarks. Thus, strangeness-carrying
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Fig. 1.4. A qualitative image of processes leading to production of (multi)-
strange particles: in the QGP phase gluon collisions produce pairs of strange
quarks, which are shown to assemble into otherwise rarely made multistrange
baryons (for example Ξ(ssu)) and antibaryons (for example Ω(s̄s̄s̄)).

hadrons are naturally radioactive and decay by weak interactions that
occur, in general, on a time scale that is extremely long compared with
the nuclear-collision times. This makes it relatively easy to detect the
strange particles through the tracks left by their decay products. It is
important to remember that, unlike the light quarks, strange quarks are
not brought into the reaction by the colliding nuclei. Therefore, we know
for sure that any strange quarks or antiquarks observed in experiments
have been made from the kinetic energy of colliding nuclei.
Should the new deconfined phase of matter be formed, we expect that

final abundances of strange particles will be governed by (near) chemi-
cal equilibration of strangeness, i.e., that the yield abundance of QGP
strangeness will saturate all available phase-space cells, making it into a
q–q̄–s–s̄–g liquid. The total strangeness yielded is thus of considerable
interest and is being measured as a function of the collision energy.
The excitation function of strangeness can be qualitatively studied by

evaluating the ratio K+(s̄u)/π+(d̄u) shown in Fig. 1.5. Data obtained at
several experimental facilities is shown: from the KaoS experiment at the
SIS/GSI; from the E917 and E866 experiments at the AGS/BNL, from
NA49 and NA44 experiments at the SPS/CERN, and from the STAR
experiment at the RHIC/BNL. As long as the production of strange an-
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Fig. 1.5. Mid-rapidity K+(s̄u)/π+(d̄u) in reactions of the heaviest nuclei as a
function of the collision energy. See the text for details.

tibaryons is small, the K+(s̄u)/π+(d̄u) ratio characterizes accurately the
relative abundance of strangeness. This is not the case at RHIC energies,
for which the strangeness content found in baryonic degrees of freedom
is not negligible; see section 19.4. Using the estimate presented there, we
find that

K+ + 〈s̄〉Y
π+

� 0.23,

where the second term 〈s̄〉Y is the strangeness content in the baryonic
degrees of freedom.
This shows that the ratio of strangeness to hadron multiplicity con-

tinues to grow as the collision energy is increased. Since this growth is
here seen to occur relative to the hadron multiplicity, measured in terms
of the yield of positively charged pions, this implies that the yield of
strangeness increases faster than the increase in production of entropy.
At low energies the increase in yield of strangeness shown in Fig. 1.5
shows the effect of the energy threshold for production of strangeness.
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The specific yield of strangeness per participating baryon increases much
faster. In fact the specific yield of pions increases by 50% on going
from AGS to CERN energies, which implies that the yield of stran-
geness per baryon continues to grow rapidly in the energy range 5 GeV
< s1/2 < 17 GeV.
The most interesting qualitative signature of strangeness in QGP is the

yield of (multi)strange antibaryons. Given the ready supply of (strange)
quarks and antiquarks, otherwise rarely produced (strange) particles will
be emerging from a deconfined phase. In particular, the formation of
antimatter particles comprising strangeness is of interest [215]. These
particles can be more readily assembled in the high-density deconfined
environment. In Fig. 1.4, we illustrate the sequence of events that leads
to the formation of these particles: microscopic reactions, predominantly
involving fusion of gluons, form pairs of strange quarks, of which clusters
are formed and emitted.
Enhanced production of strange particles has been predicted to occur in

a QGP for each strange particle species, and to increase with the strangen-
ess content of the particle [164, 215]. Such enhancements in the number of
strange particles produced per participating nucleon have now been ob-
served in, e.g., lead–lead (Pb–Pb) collisions, compared with expectations
arising from studies of proton–proton (p–p) and proton–beryllium (p–
Be) collisions, as is shown in Fig. 1.6. The enhancement for a particular
particle is defined as the number of that particle produced per partici-
pating nucleon in Pb–Pb collisions, divided by the number produced per
participating nucleon seen in p–Be interactions [38].
In Fig. 1.6 the h− symbol denotes the yield enhancement of negatively

charged hadrons, mainly negative pions. This result implies an enhance-
ment by a factor 1.3 for all non-strange hadrons. Such an enhancement is
natural if QGP is formed on account of the breaking of the color bonds,
and the associated enhancement in number of accessible degrees of free-
dom compared with reaction scenarios involving confined hadrons. Later
in this book we will discuss in depth the issues related to enhanced pro-
duction of entropy in the deconfined phase.
We further see, in Fig. 1.6, that the production of particles that contain

one strange quark, such as the neutral kaon K0 and the Λ-particle, is
enhanced by a factor of about three; the enhancement factor rises to
about five for the doubly strange Ξ-particle (and its antiparticle, the anti-
Ξ), and more than ten for the yield of (Ω + Ω) particles, which contain
three strange or antistrange quarks. The particles in the right-hand panel
of Fig. 1.6 have no quarks in common with the colliding nucleons.
When one is interpreting these results as significant indicators for the

formation of the deconfined state, it is important to be able to argue
that both matter and antimatter particles were produced by the same
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Fig. 1.6. Enhanced production of (strange) hadrons in Pb–Pb 158A-GeV heavy-
ion collisions. Enhancement is defined with respect to p–Be collisions. Results
were obtained by by the CERN WA97 experiment considering particles emitted
by a source stationary in the CM frame of reference [38].

mechanisms, as would be the case should a deconfined soup of quarks and
antiquarks break up into final-state hadrons [42]. To demonstrate this,
one studies not only the abundances but also the spectra of the parti-
cles produced. In order to reduce the dependence on the flow of matter
along the collision axis, which is related to the collision dynamics, it is
convenient to look only at hadron spectra with momentum components
transverse to the original collision axis.
In Fig. 1.7, we see the spectra of strange baryons (Λ, Ξ, and Ω) and

antibaryons (anti-Λ, anti-Ξ−, and anti-Ω−) as functions of the transverse
energy, m⊥ =

√
m2 + p2⊥. The most significant feature of Fig. 1.7 is that

the slopes of the spectra for a particle and its antiparticle are very similar.
The difference between the particle and antiparticle yields is a result of the
quark–antiquark yield asymmetry present. The shape identity of matter
and antimatter verifies that the mechanism of production is the same,
corroborating the evidence for a common, deconfined source of strange
hadrons.
Much of the material of this book will be devoted to the development

of ideas demonstrating that these results are a natural consequence of the
formation of the deconfined QGP state. It is important to keep in mind
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Fig. 1.7. Transverse mass spectra of strange and multistrange baryons and an-
tibaryons. Results obtained by the CERNWA97 experiment for particles emitted
at mid-rapidity [42].

that further evidence for the deconfinement of quarks in these reactions
is available. The production of charmonium, i.e., particles containing a
heavy charm quark and an antiquark, is another well-studied phenomenon
[188].

1.7 Other probes of quark–gluon plasma

Since the charm quark is about ten times heavier than the strange quark,
at SPS energies pairs of charm quarks can be formed only during the very
early stages of the collision, as the nuclei begin to penetrate each other.
In this early stage the colliding particles have the energy to overcome the
higher energy threshold. If the QGP phase is formed, these charmed qu-
arks have less chance of forming a charmonium state, because the gluons
present within the plasma hinder their binding, or/and break the bound
states. The observed strong suppression of the J/Ψ signal in 158A-GeV




